Ferritin and ferritin isoforms I: Structure-function relationships, synthesis, degradation and secretion.

نویسندگان

  • A M Koorts
  • M Viljoen
چکیده

Ferritin is the intracellular protein responsible for the sequestration, storage and release of iron. Ferritin can accumulate up to 4500 iron atoms as a ferrihydrite mineral in a protein shell and releases these iron atoms when there is an increase in the cell's need for bioavailable iron. The ferritin protein shell consists of 24 protein subunits of two types, the H-subunit and the L-subunit. These ferritin subunits perform different functions in the mineralization process of iron. The ferritin protein shell can exist as various combinations of these two subunit types, giving rise to heteropolymers or isoferritins. Isoferritins are functionally distinct and characteristic populations of isoferritins are found depending on the type of cell, the proliferation status of the cell and the presence of disease. The synthesis of ferritin is regulated both transcriptionally and translationally. Translation of ferritin subunit mRNA is increased or decreased, depending on the labile iron pool and is controlled by an iron-responsive element present in the 5'-untranslated region of the ferritin subunit mRNA. The transcription of the genes for the ferritin subunits is controlled by hormones and cytokines, which can result in a change in the pool of translatable mRNA. The levels of intracellular ferritin are determined by the balance between synthesis and degradation. Degradation of ferritin in the cytosol results in complete release of iron, while degradation in secondary lysosomes results in the formation of haemosiderin and protection against iron toxicity. The majority of ferritin is found in the cytosol. However, ferritin with slightly different properties can also be found in organelles such as nuclei and mitochondria. Most of the ferritin produced intracellularly is harnessed for the regulation of iron bioavailability; however, some of the ferritin is secreted and internalized by other cells. In addition to the regulation of iron bioavailability ferritin may contribute to the control of myelopoiesis and immunological responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered ferritin subunit composition: change in iron metabolism in lens epithelial cells and downstream effects on glutathione levels and VEGF secretion.

PURPOSE The iron storage protein ferritin is necessary for the safe storage of iron and for protection against the production of iron-catalyzed oxidative damage. Ferritin is composed of 24 subunits of two types: heavy (H) and light (L). The ratio of these subunits is tissue specific, and alteration of this ratio can have profound effects on iron storage and availability. In the present study, s...

متن کامل

Acute Phase Proteins: Ferritin and Ferritin Isoforms

Ferritin is a positive acute phase reactant, exhibiting increased levels in blood during the acute phase response. Nevertheless, the precise role of ferritin as an acute phase reactant remains to be clarified. As for other acute phase proteins, ferritin is produced and secreted by hepatocytes. However, ferritin is also produced and secreted by other cell types, including macrophages and cancer ...

متن کامل

Posttranscriptional regulation of ferritin during nodule development in soybean.

During soybean (Glycine max) nodule development, induced ferritin mRNA concentration remains elevated while the protein concentration decreases 4- to 5-fold (M. Ragland and E.C. Theil [1993] Plant Mol Biol 21: 555-560). Investigation of posttranscriptional regulation of nodule ferritin during development showed that ferritin mRNA was efficiently translated based on polyribosome size in vivo, pr...

متن کامل

Iron-independent induction of ferritin H chain by tumor necrosis factor.

Iron increases the synthesis of the iron-storage protein, ferritin, largely by promoting translation of preexisting mRNAs for both the H and L ferritin isoforms (H, heavy, heart, acidic; L, light, liver, basic). We have recently cloned and sequenced a full-length cDNA to murine ferritin H and identified ferritin H as a gene induced by tumor necrosis factor alpha (TNF-alpha, cachectin). Using pr...

متن کامل

Cloning and Characterisation of Multiple Ferritin Isoforms in the Atlantic Salmon (Salmo salar)

Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of physiology and biochemistry

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2007